A New Normal? Revisiting the impact of bank capital requirements on lending and real activity

Gianni De Nicolò International Monetary Fund and CESifo

FED Chicago Annual International Banking Conference, November 3-4, 2016

The views expressed in this paper are those of the author(s) and do not necessarily represent those of the IMF or IMF policy.

Lower output growth.....

Lower investment growth.....

Lower credit growth

Decline in trade.....

A New Normal?

- Several potential explanations in the literature:
- role of private and public deleveraging in the aftermath of a financial crisis
- Productivity slowdown resulting from reduced innovation and technology adoption
- Demographic trends
- The Basel tightening of bank regulation started in 2009 and is on-going.
- Is this tightening related to these trends?

Revisiting the impact of bank capital requirements on lending and real activity

- Earlier studies found a relatively small impact of an increase in capital requirements on lending and real activity both in the short- and long-run.
- The calibrations of some recent equilibrium models deliver a significantly larger impact in the long-run

• Why?

- I revisit the issue by
- Briefly reviewing the recent literature
- Presenting new evidence using international data panels at a firm and country level.

A preliminary result

- The impact of an increase in capital requirements on bank lending and real activity appears larger than previously thought.
- This conclusion seems supported by:
- The counterfactual experiments of some calibrated equilibrium models
- New empirical evidence
- What might be the reasons of the apparent discrepancy between earlier and later studies?
- More important role of financial frictions in some recent calibrated models
- New evidence based on samples larger than those used previously

Empirical studies

• Short- run

 Recent "natural experiment" studies report significantly larger numbers for lending than previous studies

• Long-run

• MAG (2010): a one percentage point increase in the target ratio of capital would lead to a decline in the level of GDP of about 0.15 percent relative to baseline

Calibrated models (1)

- Van den Heuvel (JME, 2008)
- banks provide liquidity valued by households, and choose the risk of their portfolio, with some riskshifting due to deposit insurance.
- capital requirements limit bank risk-shifting, but they are costly because they reduce liquidity.
- Calibration results:
- (US data) The welfare cost of Basel II regulation is equivalent to a permanent loss in consumption between 0.1% and 1%
- Basel II capital requirements are too high.

The Van Den Heuvel MAG(2010) update

Table A6.1

Steady-state welfare loss due to higher capital requirements in terms of consumption equivalents: formula-based measures¹

Increase in capital ratio relative to current level	Canada	France	Germany	ltaly	Nether- lands	Spain	UK	US	Japan	Avg	St. Dev.
(percentage points)	(percentage deviation from [2008 nominal] consumption)										
2	0.2	0.1	0.1	0.1	0.4	0.2	0.2	0.1	0.1	0.2	0.1
4	0.5	0.1	0.2	0.3	0.8	0.4		0.3	0.2	0.4	0.3
6	0.7	0.2	0.3	0.4	1.1	0.6		0.4	0.3	0.5	0.4

¹ Welfare loss due to tightening of capital requirement as computed in Van den Heuvel (2008).

Calibrated models (2)

- De Nicolò et al., (RFS, 2014)
- *Industry* composed of homogenous and infinitely lived banks financed by short-term debt, insured deposits and equity, maturity transformation as in Diamond and Dybvig (1983), exposed to credit and liquidity risks
- Inverted U-shaped relationship between steady state bank lending and capital requirements
- Calibration results for capital requirements (US data):
- Required (Tier 1) capital ratio increases from o to 4 percent, bank lending increases by about 15 percent.
- Required (Tier 1) capital increases from 4 percent to 12 percent, bank lending declines by about 2.5 percent

Calibrated models (3)

- **Corbae and D'Erasmo. (2014):** Banking industry dynamics with heterogeneous banks
- Calibration results: an increase in capital requirement from 4 to 6 percent implies an 8 percent fall in bank lending
- Some recent equilibrium models:
- Moving to the 'optimal' capital requirement deliver steady state output declines ranging from 1 to 8 percent
- These declines are welfare improving
- Yet, 'optimal' capital ratios differ considerably

Optimal capital requirements in some recent DSGE models

Begenau (2014)

Figure 4: Optimal Level of Risked Based Capital Ratio

Adrian & Boyachenko (2013)

New evidence: preliminary results

- Bank-level data: consolidated account and market data for a panel of about 1,400 publicly traded banks in 43 advanced and emerging market economies for the period 1982-2013.
- Statistical model: a version of the specification by Hancock et al. (1995, 1998) (similar to Flannery and Rangan , 2008, Berrospide and Edge, 2010, Francis and Osborne, 2012)
- Country-level data: aggregate banking variables and GDP growth for 89 countries during 1998-2011.
- Statistical model, based on the finance-growth literature:
- bank capitalization => bank credit-to-(nominal) GDP growth .
- bank credit-to-(nominal) GDP growth => real per capita GDP growth.

Bank-level data model: short-run impact

$$\Delta \ln EA_{it} = \lambda_{EA} (\ln EA_{it}^* - \ln EA_{it-1}) + \varepsilon_{it}$$
(1)

$$\Delta \ln L_{it} = \lambda_L (\ln L_{it}^* - \ln L_{it-1}) + \alpha \Delta \ln E A_{it} + \eta_{it}$$
(2)

$$\ln EA_{it}^{*} = \alpha_{EAi} + \gamma_{EAi} + \beta_{EA}X_{it}$$
(3)

$$\ln L_{it}^{*} = a_{Li} + \gamma_{Lt} + A_{L} \ln EA_{it}^{*} + \beta_{L} NIM_{it} + \gamma M_{jt}$$
(4)

 $X_{it} = (\ln TA, ROA, TobinQ);$ $M_{it} = (RGDPG, INFL)$

Panel IV estimation

		US		Advanced (ex. US)		Emerging
VARIABLES	Δln(EA)	∆ln(Loan)	Δln(EA)	∆In(Loan)	Δln(EA)	Δln(Loan)
Ln TA	0.762		-1.672		-7.730***	
	[0.48]		[0.11]		[0.00]	
ROA	11.05***		12.69***		7.532***	
	[0.00]		[0.00]		[0.00]	
TobinQ	-41.81***		-7.957		-0.299	
	[0.00]		[0.641]		[0.574]	
Δln(EA)		-0.163***		-0.105***		-0.181***
		[0.00]		[0.00]		[0.00]
Ln Loan (t-1)		-9.715***		-6.035***		-11.07***
		[0.00]		[0.00]		[0.00]
NIM		2.906***		-0.444*		0.362
		[0.00]		[0.07]		[0.21]
RGDPG			-42.32	-22.66**	-66.54*	24.61
			[0.14]	[0.03]	[0.07]	[0.21]
INFL			-1.106***	-0.662***	-0.0295	-0.185**
			[0.00]	[0.00]	[0.84]	[0.03]
SMR			6.508**	17.39***	0.195	21.96***
			[0.02]	[0.00]	[0.95]	[0.00]
Constant	21.61	103.0***	30.68	114.0***	109.0***	169.1***
	[0.12]	[0.00]	[0.13]	[0.00]	[0.00]	[0.00]
Bank-Time effects	Y	Y	Y	Y	Y	Y
Observations	9,439	9,439	6,602	6,602	2,174	2,174
R-squared (within)	0.152	0.27	0.125	0.41	0.092	0.33
Number of banks	749	749	440	440	222	222

Robust pval in brackets

*** p<0.01, ** p<0.05, * p<0.1

Impact of a 1% point change of capital requirement on lending growth

Capital ratio	US	Advanced	Emerging
		(ex. US)	
7	0		
8	-2.33	-1.50	-2.59
9	-2.04	-1.31	-2.26
10	-1.81	-1.17	-2.01
11	-1.63	-1.05	-1.81
12	-1.48	-0.95	-1.65
13	-1.36	-0.87	-1.51
14	-1.25	-0.81	-1.39
15	-1.16	-0.75	-1.29

Country-level data model: long-run impact

Growth of bank credit to the private sector to GDP: $\Delta BC_{it} = \ln BC_{it} - \ln BC_{it-1}$

Real per-capita GDP growth: $G_{it} = \ln RGDPPC_{it} - \ln RGDPPC_{it-1}$

$$\Delta BC_{it} = \alpha_{BCi} + \beta_{BCt} + \gamma_{BC} EAR_{it} + cFMD_{it} + d_{BC} \ln BC_{it-1} + u_{it} \quad (1)$$

$$\Delta G_{it} = \alpha_{Gi} + \beta_{Gt} + \gamma_G \Delta B C_{it} + \gamma INFL_{it} + d_G \ln RGDPPC_{it-1} + \varepsilon_{it} \quad (2)$$

Banking crisis probability (Pooled Logit), based on the binary variable:

 $Z_{it} = 1 \text{ if crisis year, 0 otherwise}$ $P(Z_{it} = 1) = F(\alpha_c + \beta_c EAR_{it-1} + \gamma_c \Delta G_{it-1} + \delta_c INFL_{it-1} + \eta_{it}) \quad (3)$

Panel IV estimation

	High Income			Medium to low			
					income		
VARIABLES	ΔΒC	ΔG	P(Z=1)	ΔΒC	ΔG	P(Z=1)	
EAR	-0.964***			-1.133***			
	[0.00]			[0.00]			
FMD	3.677			5.872***			
	[0.14]			[0.00]			
Ln BCGDP(t-1)	-9.380***			-17.31***			
	[0.00]			[0.00]			
ΔΒC		0.304***			0.0525**		
		[0.00]			[0.05]		
Ln RGDPPC(t-1)		-15.77***			-13.63***		
		[0.00]			[0.00]		
Constant	42.87**	156.2***		64.27***	103.9***		
	[0.00]	[0.00]		[0.00]	[0.00]		
EAR(t-1)			-0.215**			-0.0801**	
			[0.01]			[0.04]	
ΔG(t-1)			-0.226**			-0.178***	
			[0.01]			[0.00]	
INFL(t-1)			2.866			5.355***	
			[0.778]			[0.00]	
Constant			1.029			-1.088	
			[0.410]			[0.119]	
Country-Time	Yes	Yes		Yes	Yes		
Observations	470	470	260	521	521	440	
R-squared (within)	0.303	0.47		0.312	0.35		
Pseudo R2			0.34			0.19	
Countries	39	39	39	50	50	50	

Robust pval in brackets *** p<0.01, ** p<0.05, * p<0.1

Impact of a 1% point change of capital requirement on lending and real GDP growth

Bank lending growth Real per-capita GDP growth

High income countries	-0.96	-0.29
Medium to low income countries	-1.13	-0.06

• These estimates are significantly larger than previous ones for high income (advanced) economies

Net growth benefits

Expected 'steady state' output growth conditional on ΔEAR_i :

 $EG_{i} | \Delta EAR_{i} = [1 - EP(Z_{it} = 1) - \Delta P(Z_{it} = 1 | \Delta EAR_{i})]E(\Delta G_{i} | Z_{it} = 0) + [EP(Z_{it} = 1) + \Delta P(Z_{it} = 1 | \Delta EAR_{i})]E(\Delta G_{i} | Z_{it} = 1) + E(\Delta G_{i} | \Delta EAR_{i})]E(\Delta G_{i} | Z_{it} = 1)$ (4)

 $E(\Delta G_i | Z_{it} = 0)$ ($E(\Delta G_i | Z_{it} = 1)$) = Average 1998-2011 real GDP growth rate excluding (including) crisis years (predictions from (2) and (3)) $E(\Delta G_i | \Delta EAR_i) = \gamma_{BC} \gamma_G \Delta EAR_i$, cost of a change in capital requirement $\Delta P(Z_{it} = 1 | \Delta EAR_i) = (\hat{\beta}_C + \hat{\gamma}_C \gamma_{BC} \gamma_G) \Delta EAR_i$ change in crisis probability $EP(Z_{it} = 1)$ = Expected crisis probability (prediction from the Logit model)

Expected 'steady state' *change* in output growth conditional on $\triangle EAR_i$:

$$\Delta(EG_i \mid \Delta EAR_i) = \{ (\hat{\beta}_C + \hat{\gamma}_C \gamma_{BC} \gamma_G) [E(\Delta G_i \mid Z_{it} = 1) - E(\Delta G_i \mid Z_{it} = 0)] + \gamma_{BC} \gamma_G \} \Delta EAR_i \quad (5)$$

Net growth benefit of a 1% point change of capital requirement

	crisis growth loss	dP	Expected benefit	Expected cost	Net benefit
		High incon	ne economies		
median	-5.69	-0.020	0.11	0.29	-0.18
1% percentile	-11.74	-0.020	0.24	0.29	-0.06
		Medium to	o low income econo	mies	
median	-8.93	-0.005	0.04	0.06	-0.02
1% percentile	-23.05	-0.005	0.11	0.06	0.05

Issues for discussion

- The impact of an increase in capital requirements on bank lending and real activity appears larger than previously thought...however, updating data and check robustness....
- Yet, the debate has been traditionally focused on what *levels* of minimum capital ratios might be best.
- Comparatively less attention has been devoted to the implementation mechanisms
- A key result in De Nicolò et al. (2014): a form of "prompt corrective action" dominates non-contingent capital requirements in terms of efficiency and welfare.
- *How* capital regulation is implemented might be as important as (and give a different perspective to) what is the best *level* of bank capital requirements.